Из точки m, которая лежит вне плоскости а, проведены к этой плоскости наклонные mn и mk, образующие с ней углы 30° и 45° соответственно. найдите наклонную mk, если проекция наклонной mn на плоскость а равна 4√3 см.
от

1 Ответ

Дано: угол между наклонной mn и плоскостью a - 30°, угол между наклонной mk и плоскостью a - 45°, проекция наклонной mn на плоскость a равна 4√3 см.

Найти: длину наклонной mk.

Решение:
Обозначим длину наклонной mk как x, длину проекции наклонной mn на плоскость a как y.

Так как угол между наклонной и ее проекцией на плоскость равен 30°, то получаем, что y = x * cos(30°) = x * (√3 / 2).

Также, так как угол между наклонной mk и плоскостью a равен 45°, то x = y * cos(45°) = 4√3 * (√2 / 2) = 4√6 см.

Ответ: длина наклонной mk равна 4√6 см.
от