Конденсатор электроёмкостью 3 мФ соединён с источником постоянного напряжения. Заряд конденсатора равен 0,12 Кл. а) Чему равно напряжение между обкладками конденсатора? б) Чему равна энергия заряженного конденсатора? в) Увеличится или уменьшится энергия заряженного конденсатора при увеличении расстояния между обкладками в 5 раз? Во сколько раз?
от

1 Ответ

Дано:
Емкость конденсатора С = 3 мФ = 3 * 10^(-3) Ф,
Заряд конденсатора q = 0.12 Кл.

а) Найдем напряжение между обкладками конденсатора:
U = q / C.

б) Найдем энергию заряженного конденсатора:
W = (q^2) / (2 * C).

в) Найдем, увеличится или уменьшится ли энергия заряженного конденсатора при увеличении расстояния между обкладками в 5 раз:
Если расстояние между обкладками увеличится в 5 раз (d' = 5d), то новая емкость будет равна:
C' = ε * (S / d'),
где ε - диэлектрическая проницаемость среды (примем за 8.85 * 10^(-12) Ф/м),
S - площадь обкладок конденсатора.

Решение:
а) Напряжение между обкладками конденсатора: U = 0.12 / (3 * 10^(-3)) = 40 В.
б) Энергия заряженного конденсатора: W = (0.12^2) / (2 * 3 * 10^(-3)) = 2.4 Дж.

Если расстояние между обкладками увеличится в 5 раз, то новая емкость будет:
C' = 8.85 * 10^(-12) * S / (5d) = 1.77 * 10^(-12) * S / d.

Таким образом, энергия заряженного конденсатора увеличится в 5 раз, поскольку она обратно пропорциональна квадрату напряжения, которое в свою очередь обратно пропорционально к расстоянию между обкладками.

Ответ:
а) Напряжение между обкладками конденсатора равно 40 В.
б) Энергия заряженного конденсатора равна 2.4 Дж.
в) Энергия заряженного конденсатора увеличится в 5 раз при увеличении расстояния между обкладками в 5 раз.
от