Углы между квадратными плоскостями ABCD ромба и AB1C1D1, вершины которых являются общими, равны 60°, причем квадратная плоскость является ортогональной проекцией плоскости ромба. Диагонали ромба имеют длину АС = 8 см и BD = 4 см. Найдите площадь квадрата​
от

1 Ответ

Дано: AC = 8 см, BD = 4 см

Найти: площадь квадрата

Решение:

1. Найдем длину стороны ромба по формуле диагоналей:

AB = √(AC^2 + BD^2) = √(8^2 + 4^2) = √(64 + 16) = √80 = 4√5 см

2. Площадь квадрата равна площади его диагонали:

Площадь квадрата = AB^2 = (4√5)^2 = 80 см^2

Ответ: 80 см^2
от