дано: стороны треугольника a = 2 м, b = 3 м, угол между ними θ
найти: площадь треугольника S
решение:
1. Площадь треугольника можно найти с помощью формулы:
S = 0.5 * a * b * sin(θ)
2. Подставим значения для каждого угла:
а) θ = 30°
sin(30°) = 0.5
S = 0.5 * 2 * 3 * 0.5 = 1.5 м²
б) θ = 40°
sin(40°) ≈ 0.6428
S = 0.5 * 2 * 3 * 0.6428 ≈ 1.929 м²
в) θ = 55°
sin(55°) ≈ 0.8192
S = 0.5 * 2 * 3 * 0.8192 ≈ 2.458 м²
г) θ = 120°
sin(120°) = sin(60°) ≈ 0.8660
S = 0.5 * 2 * 3 * 0.8660 ≈ 2.598 м²
д) θ = 125°
sin(125°) = sin(55°) ≈ 0.8192
S = 0.5 * 2 * 3 * 0.8192 ≈ 2.458 м²
е) θ = 140°
sin(140°) = sin(40°) ≈ 0.6428
S = 0.5 * 2 * 3 * 0.6428 ≈ 1.929 м²
ж) θ = 150°
sin(150°) = sin(30°) = 0.5
S = 0.5 * 2 * 3 * 0.5 = 1.5 м²
ответ:
а) 1.5 м²
б) 1.929 м²
в) 2.458 м²
г) 2.598 м²
д) 2.458 м²
е) 1.929 м²
ж) 1.5 м²