Надо сфотографировать автомобиль, движущийся мимо со скоростью v = 54 км/ч. Размытие контура изображения на плёнке не должна превышать а = 50 мкм. Каким должно быть время экспозиции ∆t, если фокусное расстояние объектива F = 40 мм, а фотографирование производится с расстояния d = 10 м?
от

1 Ответ

дано:
- скорость автомобиля (v) = 54 км/ч = 54 / 3.6 м/c ≈ 15 м/c
- максимальное размытие контура изображения (a) = 50 мкм = 50 * 10^-6 м
- фокусное расстояние объектива (F) = 40 мм = 0,04 м
- расстояние до объекта (d) = 10 м

найти:
время экспозиции (∆t).

решение:

Размытие на пленке связано с движением объекта и временем экспозиции по формуле:

a = v * ∆t * (F / d).

Выразим время экспозиции ∆t из этого уравнения:

∆t = a * (d / F) / v.

Теперь подставим известные значения:

∆t = (50 * 10^-6) * (10 / 0,04) / 15.

Сначала посчитаем (10 / 0,04):

10 / 0,04 = 250.

Теперь подставим это значение в уравнение:

∆t = (50 * 10^-6) * 250 / 15.

Выполним умножение:

∆t = (12.5 * 10^-6) / 15.

Теперь расчитаем:

∆t ≈ 0.0008333 с.

Переведем в миллисекунды:

∆t ≈ 0.0008333 * 1000 ≈ 0,8333 мс.

ответ:
Время экспозиции должно составлять примерно 0,8333 мс.
от