Дано:
Отношение числа грузовых автомашин к числу легковых машин, проезжающих по автомагистрали, где стоит бензоколонка, равно 3:5. Каждая десятая легковая машина и каждая двадцатая грузовая машина заправляются на этой бензоколонке.
Найти:
Вероятность того, что подъехавшая машина - грузовая.
Решение с расчетом:
Пусть A - событие "машина является грузовой", B - событие "машина подъехала на заправку".
Из известных данных:
Пусть x - это множитель, тогда количество грузовых машин будет 3x, а количество легковых машин будет 5x.
Общее количество машин, которые могут подъехать на заправку, будет 8x.
Вероятность того, что легковая машина заправится, составляет 1/10, а вероятность того, что грузовая машина заправится, составляет 1/20.
Теперь можем выразить вероятность события A при условии события B:
P(A|B) = (вероятность того, что произойдут оба события) / (вероятность события B) = (3x / 20) / (8x / 20) = 3 / 8
Ответ:
Вероятность того, что подъехавшая машина - грузовая, составляет 3/8.