Произведено 4 независимых выстрела по цели. Вероятность попадания для каждого равна 0,2. Для разрушения достаточно двух попаданий. Какова вероятность, что цель будет разрушена?
от

1 Ответ

Дано:
Вероятность попадания при одном выстреле: 0.2
Количество выстрелов: 4
Для разрушения цели необходимо минимум два попадания.

Необходимо найти:
Вероятность разрушения цели.

Решение:
Вероятность разрушения цели равна сумме вероятностей того, что будут два, три или четыре попадания.

P(разрушение) = P(2 попадания) + P(3 попадания) + P(4 попадания)

Вычислим вероятность каждого из этих событий:

1) Для двух попаданий:
P(2) = C(4, 2) * 0.2^2 * (1-0.2)^(4-2) = 6 * 0.04 * 0.64 = 0.1536

2) Для трех попаданий:
P(3) = C(4, 3) * 0.2^3 * (1-0.2)^(4-3) = 4 * 0.008 * 0.8 = 0.0256

3) Для четырех попаданий:
P(4) = C(4, 4) * 0.2^4 * (1-0.2)^(4-4) = 1 * 0.0016 * 1 = 0.0016

Теперь сложим эти вероятности:

P(разрушение) = 0.1536 + 0.0256 + 0.0016 = 0.1808

Ответ:
Вероятность разрушения цели составляет приблизительно 0.1808 или 18.08%.
от