Дано: угол θ = 29°, период решетки d = 1 мкм = 1 × 10^-6 м
Найти: квантовое число энергетического уровня n
Решение с подробными расчетами по имеющимся данным:
Для спектральной линии серии Бальмера первого порядка:
n * λ = d * sin(θ)
где n - квантовое число энергетического уровня, λ - длина волны
Перепишем формулу для нахождения длины волны:
λ = d * sin(θ) / n
Для первой линии серии Бальмера n = 2. Подставляем данные:
λ = (1 × 10^-6 м) * sin(29°) / 2
λ = (1 × 10^-6 м) * 0.4848 / 2
λ ≈ 2.424 × 10^-7 м
Теперь найдем квантовое число энергетического уровня:
n = d * sin(θ) / λ
n = (1 × 10^-6 м) * sin(29°) / (2.424 × 10^-7 м)
n = (1 × 10^-6 м) * 0.4848 / (2.424 × 10^-7 м)
n = 1.1502 / 2.424
n ≈ 0.474
Ответ: квантовое число энергетического уровня, переходу с которого соответствует данная линия, равно примерно 0.474.