дано:
Г = 3,0 (увеличение),
l = 20 см = 0.2 м (расстояние между предметом и изображением).
найти:
фокусное расстояние F зеркала.
решение:
1. Увеличение Г определяется как:
Г = - d' / d,
где d' — расстояние от зеркала до изображения, а d — расстояние от зеркала до предмета.
2. Из этого уравнения можно выразить d':
d' = - Г * d.
3. С учетом того, что расстояние между предметом и изображением l равно |d' - d|, мы можем записать:
l = |d' - d|.
4. Подставим выражение для d':
l = |- Г * d - d|.
5. Так как Г = 3,0, у нас состоит два случая:
Случай 1: d' = Г * d + d
Случай 2: d' = - Г * d + d (не подходит, так как изображение действительное)
Таким образом, пишем:
l = (Г + 1) * d.
6. Выразим d:
d = l / (Г + 1) = 0.2 / (3.0 + 1) = 0.2 / 4 = 0.05 м.
7. Теперь подставим d обратно в выражение для d':
d' = - Г * d = - 3.0 * 0.05 = -0.15 м.
8. Используем формулу для тонких зеркал:
1/F = 1/d + 1/d'.
9. Подставим значения:
1/F = 1/0.05 + 1/(-0.15).
10. Находим 1/0.05 и 1/(-0.15):
1/0.05 = 20,
1/(-0.15) ≈ -6.6667.
Теперь подставим:
1/F = 20 - 6.6667 = 13.3333.
11. Найдем F:
F = 1 / 13.3333 ≈ 0.075 м.
ответ:
фокусное расстояние зеркала составляет 0.075 м.