Биссектрисы углов А и С треугольника ABC пересекаются в точке О. Угол ABC равен а. Найдите угол АОС.
от

1 Ответ

дано:  
треугольник ABC, где угол ABC равен a. Биссектрисы углов A и C пересекаются в точке O.  

найти:  
найти угол AOC.  

решение:  
1. Обозначим углы:
   - угол A = α,
   - угол C = β.

2. Согласно свойству суммы углов в треугольнике, имеем:
   α + a + β = 180.

3. Тогда можно выразить угол β через другие углы:
   β = 180 - α - a.

4. Угол AOB равен половине угла A:
   угол AOB = α / 2.

5. Угол COB равен половине угла C:
   угол COB = β / 2 = (180 - α - a) / 2.

6. Теперь найдем угол AOC:
   угол AOC = угол AOB + угол COB
   угол AOC = (α / 2) + ((180 - α - a) / 2).

7. Упрощаем:
   угол AOC = (α + 180 - α - a) / 2
   угол AOC = (180 - a) / 2.

ответ:  
Угол AOC равен (180 - a) / 2.
от