Санки съезжают с горки длиной 50 м за 5 с. Вычислите коэффициент трения скольжения саней по поверхности горки. Поверхность горки составляет угол 45°. Начальная скорость равна нулю.
от

1 Ответ

Дано:  
- Длина горки (L) = 50 м  
- Время спуска (t) = 5 с  
- Угол наклона горки (α) = 45°  
- Начальная скорость (u) = 0 м/с  

Найти:  
- Коэффициент трения скольжения (μ).  

Решение:  
1. Найдем среднюю скорость саней (vср):

vср = L / t = 50 м / 5 с = 10 м/с.

2. Поскольку начальная скорость равна нулю, можем использовать формулу для определения ускорения (a):

v = u + at.

Подставляя значения:

10 м/с = 0 + a * 5 с.

Отсюда:

a = 10 м/с / 5 с = 2 м/с².

3. Теперь разложим силы, действующие на санки. Сила тяжести (Fg) равна:

Fg = m * g, где g = 9,81 м/с².

4. Разложим силу тяжести на компоненты:

- Компонента силы, направленная вниз по наклонной плоскости (Fg,п):

Fg,п = Fg * sin(α) = mg * sin(45°).

- Компонента силы, нормальная к поверхности (N):

N = Fg * cos(α) = mg * cos(45°).

Для угла 45°:

sin(45°) = cos(45°) = √2 / 2 ≈ 0,707.

Соответственно:

Fg,п = mg * 0,707,  
N = mg * 0,707.

5. Составим уравнение движения санок:

Fg,п - Fтр = ma, где Fтр = μN - сила трения.

6. Подставим значения:

mg * 0,707 - μ(mg * 0,707) = ma.

7. Сократим m (если m ≠ 0):

g * 0,707 - μ(g * 0,707) = a.

8. Теперь подставим g = 9,81 м/с² и a = 2 м/с²:

9,81 * 0,707 - μ(9,81 * 0,707) = 2.

9. Посчитаем:

9,81 * 0,707 ≈ 6,93.

Таким образом:

6,93 - μ(6,93) = 2.

10. Преобразуем уравнение:

μ(6,93) = 6,93 - 2 = 4,93.

Отсюда:

μ = 4,93 / 6,93 ≈ 0,711.

Ответ:  
Коэффициент трения скольжения саней по поверхности горки составляет примерно 0,711.
от