Дано:
- Показатель преломления стекла (n) = 1,5
- Длина волны света (λ) = 650 нм = 650 × 10^-9 м
- Расстояние между двумя соседними темными полосами (Δy) = 12 мм = 12 × 10^-3 м
Найти: Угол клина (α).
Для нахождения угла α можно использовать формулу для расстояния между темными полосами в интерференционной картине для малых углов:
Δy = (m * λ) / (n * sin(α))
где m - порядок интерференционного максимума. Для темных полос m будет равен 1 для первой темной полосы.
Преобразуем формулу для нахождения угла α:
sin(α) = (m * λ) / (n * Δy)
Подставим известные значения в формулу. Для первой темной полосы принимаем m = 1:
sin(α) = (1 * 650 × 10^-9 m) / (1,5 * 12 × 10^-3 m)
Теперь вычислим:
sin(α) = (650 × 10^-9) / (1,5 * 12 × 10^-3)
sin(α) = (650 × 10^-9) / (18 × 10^-3)
sin(α) = 650 / 18 × 10^-6
sin(α) ≈ 36,11 × 10^-6
Теперь находим угол α:
α = arcsin(36,11 × 10^-6)
Принимая во внимание, что синус очень маленького угла примерно равен этому углу в радианах, можем считать:
α ≈ 36,11 × 10^-6 рад
Чтобы перевести угол в градусы, используем соотношение:
α (градусы) = α (радианы) * (180/π)
α (градусы) ≈ 36,11 × 10^-6 * (180/3,14159)
α (градусы) ≈ 0,00207°
Ответ:
Угол клина составляет приблизительно 0,00207°.