Дано:
- Линейная скорость v = 6 мм/с = 0,006 м/с (переведем в метры)
- Период T = 60 минут = 3600 секунд (для минутной стрелки)
Найти:
- Длина стрелки L (радиус окружности, по которой движется конец стрелки)
Решение:
1. Используем формулу для линейной скорости:
v = ω * L, где ω - угловая скорость.
2. Угловая скорость ω выражается через период T:
ω = 2 * π / T.
3. Подставим значение T:
ω = 2 * π / 3600.
4. Теперь подставим значение ω в формулу для линейной скорости:
v = (2 * π / 3600) * L.
5. Выразим длину стрелки L:
L = v / (2 * π / 3600).
6. Упростим:
L = v * 3600 / (2 * π).
7. Подставим значение v:
L = 0,006 * 3600 / (2 * π).
8. Приблизительно подставим значение π:
π ≈ 3,14, тогда:
L = 0,006 * 3600 / (2 * 3,14) = 0,006 * 3600 / 6,28.
9. Упростим:
L ≈ 0,006 * 573,86 ≈ 3,44 м.
Ответ:
Длина стрелки равна примерно 3,44 м.