В треугольнике ABC известно, что ∠C = 90°, АС = 9 см, ВС = 12 см. На стороне АВ отметили точку D так, что AD = 5 см. Найдите отрезок  CD.
от

1 Ответ

Дано:
1. Угол C = 90°.
2. Сторона AC = 9 см.
3. Сторона BC = 12 см.
4. Отрезок AD = 5 см.

Найти:
Отрезок CD.

Решение:

1. Сначала найдем длину стороны AB, используя теорему Пифагора:

   AB² = AC² + BC².

   Подставим значения:

   AB² = 9² + 12² = 81 + 144 = 225.

   AB = √225 = 15 см.

2. Теперь найдем длину отрезка DB:

   DB = AB - AD = 15 - 5 = 10 см.

3. В треугольнике BCD применим теорему Пифагора, чтобы найти CD. Сторона BD равна 10 см, а BC = 12 см.

   CD² + DB² = BC².

   Подставим значения:

   CD² + 10² = 12².

   CD² + 100 = 144.

4. Переносим 100 в правую часть:

   CD² = 144 - 100 = 44.

5. Теперь найдем CD:

   CD = √44 = 2√11 см.

Ответ:
Отрезок CD равен 2√11 см (примерно 6.63 см).
от