дано:
расстояние между конторами A и B = 20 км = 20000 м
максимальная скорость БПЛА относительно воздуха V_bpla = 17 м/с
максимальная скорость ветра V_wind = 15 м/с
время интервала отправления документов t_interval = 40 минут = 2400 секунд
найти:
минимальное число БПЛА, необходимых для работы на линии.
решение:
1. Определим скорость БПЛА относительно земли при движении в сторону от A к B с учетом ветра:
V_ground_A_B = V_bpla + V_wind = 17 м/с + 15 м/с = 32 м/с.
2. Теперь найдем время, необходимое для доставки документа от A до B:
t_AB = расстояние / скорость = 20000 м / 32 м/с ≈ 625 секунд.
3. Теперь определим скорость БПЛА обратно от B к A против ветра:
V_ground_B_A = V_bpla - V_wind = 17 м/с - 15 м/с = 2 м/с.
4. Найдем время, необходимое для возвращения БПЛА от B к A:
t_BA = расстояние / скорость = 20000 м / 2 м/с = 10000 секунд.
5. Общее время одного полного рейса (в одну сторону и обратно):
t_total = t_AB + t_BA = 625 секунд + 10000 секунд = 10625 секунд.
6. Теперь определим, сколько полных рейсов может совершить один БПЛА за 40 минут. Для этого найдем количество рейсов за 2400 секунд:
Количество рейсов = t_interval / t_total = 2400 секунд / 10625 секунд ≈ 0.226.
7. Так как одно БПЛА не успевает выполнить даже один рейс за 40 минут, необходимо больше БПЛА. Чтобы обеспечить отправление документов через равные интервалы времени, нужно округлить полученное значение до ближайшего целого числа. В данном случае минимальное количество БПЛА будет равно 1 / 0.226 ≈ 4.42, округляем до 5.
ответ:
для обеспечения документооборота необходимо минимум 5 БПЛА.