Грузовик массой 3 т движется по шоссе на север со скоростью 40 км/ч. По тому же шоссе едет легковой автомобиль массой 1 т. Как направлена и чему равна его скорость, если векторная сумма импульсов грузовика и легкового автомобиля равна нулю?
от

1 Ответ

Дано:
- масса грузовика m1 = 3 т = 3000 кг
- скорость грузовика v1 = 40 км/ч = 40 / 3.6 м/с ≈ 11.11 м/с (переводим в метры в секунду)
- масса легкового автомобиля m2 = 1 т = 1000 кг
- векторная сумма импульсов грузовика и легкового автомобиля равна нулю.

Найти:
скорость легкового автомобиля v2 и ее направление.

Решение:

Импульс грузовика p1 определяется как:

p1 = m1 * v1 = 3000 кг * 11.11 м/с ≈ 33333 кг·м/с.

Так как векторная сумма импульсов равна нулю, импульс легкового автомобиля p2 должен быть равен по модулю и противоположен по направлению импульсу грузовика:

p2 = -p1.

Следовательно:

p2 = m2 * v2.

Приравняем импульсы:

m2 * v2 = -m1 * v1.

Теперь подставим известные значения:

1000 кг * v2 = -33333 кг·м/с.

Разделим обе стороны на 1000 кг:

v2 = -33.33 м/с.

Отрицательное значение скорости указывает на то, что легковой автомобиль движется в противоположном направлении, то есть на юг.

Ответ: Скорость легкового автомобиля равна 33.33 м/с и направлена на юг.
от