Свет с длиной волны 656 нм падает на дифракционную решётку. Чему равен период дифракционной решётки, если максимум второго порядка наблюдается под углом 15°?
от

1 Ответ

дано: λ = 656 нм = 656 * 10^(-9) м (длина волны) φ = 15° (угол, под которым наблюдается максимум) k = 2 (порядок максимума)

найти: d - период дифракционной решётки

решение:
Условие для максимумов дифракции на решетке: d * sin φ = k * λ
Выразим период решетки d: d = k * λ / sin φ
Подставим значения: d = 2 * 656 * 10^(-9) м / sin 15° d ≈ 2 * 656 * 10^(-9) м / 0.2588 d ≈ 1312 * 10^(-9) м / 0.2588 d ≈ 5069.5 * 10^(-9) м d ≈ 5.0695 * 10^(-6) м d ≈ 5.07 мкм

ответ: Период дифракционной решётки равен приблизительно 5.07 мкм.
от