дано:
- масса пустого сосуда: mс = 1,8 кг
- сила тяжести, действующая на сосуд с жидкостью: Fт = 290 Н
- ускорение свободного падения: g = 10 Н/кг
- объем сосуда: V = 2 л = 0,002 м³ (в СИ)
найти:
1. вес пустого сосуда и вес сосуда с жидкостью.
2. Изменение силы упругости в столе после наливания жидкости.
3. Что за жидкость налили в сосуд.
4. Действие силы трения между столом и сосудом.
решение:
1. Найдем вес пустого сосуда:
Вес пустого сосуда Wс = mс * g
Wс = 1,8 кг * 10 Н/кг = 18 Н.
Теперь найдем вес сосуда с жидкостью:
Вес сосуда с жидкостью Wж = Fт = 290 Н.
2. Изменение силы упругости:
Сила упругости, действующая со стороны стола на сосуд, равна сумме сил тяжести сосуда и жидкости. При наливании жидкости на стол стала действовать большая сила тяжести, следовательно, сила упругости также увеличилась и теперь равна 290 Н. Если раньше она была равна только весу пустого сосуда, то теперь равна весу сосуда с жидкостью.
3. Найдем плотность жидкости:
Плотность ρ = масса / объем.
Масса жидкости mж = Fж / g = (Fт - Wс) / g = (290 Н - 18 Н) / 10 Н/кг = 27,2 кг.
Теперь найдем плотность:
ρ = mж / V = 27,2 кг / 0,002 м³ = 13600 кг/м³.
Это плотность, которая может соответствовать, например, ртути или другой тяжелой жидкости.
4. Действие силы трения:
Да, сила трения между столом и сосудом действует. Она называется статической силой трения, так как сосуд стоит на месте и не скользит.
Статическая сила трения равна силе, действующей на сосуд, пока он не начнет двигаться. В данном случае, если сосуд не движется, то сила трения будет равна весу сосуда с жидкостью, то есть 290 Н. Однако если сосуд не сдвигается, то фактическая сила трения равна нулю, но она может быть максимальной и равна 290 Н.
ответ:
1. Вес пустого сосуда составляет 18 Н, вес сосуда с жидкостью составляет 290 Н.
2. Сила упругости увеличилась и теперь равна 290 Н.
3. Жидкость в сосуде имеет плотность примерно 13600 кг/м³, что соответствует тяжелым жидкостям, например, ртути.
4. Статическая сила трения действует между столом и сосудом, ее максимум равен 290 Н, но фактически она равна нулю, если сосуд не движется.