Начертите   угол   А.   Во   внутренней   области   угла   отметьте   точку   М.   Проведите  через  точку  М  отрезок,  концы  которого  принадлежат  сторонам  угла  и  который  делится  точкой  М  в  отношении  2  :  3
от

1 Ответ

дано:  
угол A с двумя сторонами: AB и AC  
точка M внутри угла A  

найти:  
отрезок, проведенный через точку M, который делится в отношении 2 : 3  

решение:  
Для того чтобы провести отрезок, который делится в заданном отношении, необходимо сначала обозначить концы отрезка как точки D и E, где D принадлежит стороне AB, а E — стороне AC.

1. Обозначим длину отрезка DE как x.
2. Согласно условию, отрезок DE делится точкой M в отношении 2 : 3, что означает:  
   MD / ME = 2 / 3  

3. Это можно выразить через длины отрезков:  
   MD = (2 / (2 + 3)) * x = (2 / 5) * x  
   ME = (3 / (2 + 3)) * x = (3 / 5) * x  

Теперь нам необходимо провести отрезок DE так, чтобы длины отрезков MD и ME соответствовали найденным значениям.

4. Начертите угол A.  
5. Отметьте точку M внутри угла.  
6. Проведите отрезок DE так, чтобы длина MD была равна (2/5) отрезка DE, а длина ME была равна (3/5) отрезка DE.

ответ:  
отрезок DE проведен через точку M и делится в отношении 2 : 3, где D принадлежит стороне AB, а E принадлежит стороне AC.
от