Дано:
Длина волны света (λ) = 550 нм = 550 * 10^-9 м
Показатель преломления пластинки (n) = 1,6
Найти:
а) Минимальную толщину пластинки для максимальной интенсивности отраженной волны
б) Минимальную толщину пластинки для минимальной интенсивности отраженной волны
Решение с расчетом:
а) Для максимальной интенсивности отраженной волны используем условие разрушительной интерференции:
2 * n * d = m * λ,
где n - показатель преломления пластинки, d - толщина пластинки, m - порядок интерференции (для максимальной интенсивности m = 0), λ - длина волны света.
Выразим толщину пластинки:
d = (m * λ) / (2 * n)
Подставим известные значения и рассчитаем минимальную толщину пластинки для максимальной интенсивности:
d = (0 * 550 * 10^-9 м) / (2 * 1.6)
d = 0
б) Для минимальной интенсивности отраженной волны используем условие конструктивной интерференции:
2 * n * d = (m + 1/2) * λ,
где n - показатель преломления пластинки, d - толщина пластинки, m - порядок интерференции (для минимальной интенсивности m = 1), λ - длина волны света.
Выразим толщину пластинки:
d = ((m + 1/2) * λ) / (2 * n)
Подставим известные значения и рассчитаем минимальную толщину пластинки для минимальной интенсивности:
d = ((1 + 1/2) * 550 * 10^-9 м) / (2 * 1.6)
d = (1.5 * 550 * 10^-9 м) / 3.2
d ≈ 0,00041328125 м
d ≈ 0,4133 мкм
Ответ:
а) Минимальная толщина пластинки для максимальной интенсивности отраженной волны составляет 0.
б) Минимальная толщина пластинки для минимальной интенсивности отраженной волны составляет примерно 0,4133 мкм.