Свет с длиной волны 589 нм падает нормально на дифракционную решетку с периодом d = 2,5 мкм, содержащую N = 10000 штрихов. Найти угловую ширину дифракционного максимума второго порядка.
от

1 Ответ

Дано:  
Длина волны света λ = 589 нм = 589 * 10^-9 м;  
Период решетки d = 2,5 мкм = 2,5 * 10^-6 м;  
Число штрихов на решетке N = 10000.

Найти:  
Угловую ширину дифракционного максимума второго порядка.

Решение:  
Угловая ширина дифракционного максимума второго порядка может быть найдена с использованием формулы:
d * sin(θ) = n * λ,
где d - расстояние между штрихами, θ - угол дифракции, n - порядок максимума, λ - длина волны.

Для максимума второго порядка (n = 2), угол дифракции будет:
sin(θ) = 2 * λ / d.

Теперь подставим известные значения и выразим угловую ширину:
sin(θ) = 2 * 589 * 10^-9 / 2.5 * 10^-6,
sin(θ) ≈ 0.471,
θ ≈ arcsin(0.471),
θ ≈ 28.5°.

Ответ:  
Угловая ширина дифракционного максимума второго порядка составляет примерно 28.5°.
от