В равнобедренной трапеции ABCD с основаниями BC и AD угол A равен 66°. Найдите ∠C.
от

1 Ответ

дано:  
Равнобедренная трапеция ABCD с основаниями BC и AD, угол A равен 66°.  

найти:  
Угол C.  

решение:  
1. В равнобедренной трапеции углы при основаниях равны. Таким образом, угол D также равен 66°:

∠D = ∠A = 66°.

2. Сумма углов в трапеции равна 360°. Обозначим углы B и C как x и y соответственно. Мы знаем, что:

∠A + ∠B + ∠C + ∠D = 360°.

3. Подставляем известные значения:

66° + x + y + 66° = 360°.

4. Упрощаем уравнение:

x + y + 132° = 360°.

5. Выразим сумму углов B и C:

x + y = 360° - 132° = 228°.

6. Поскольку ABCD — равнобедренная трапеция, углы B и C также равны, то можем записать:

x = y.

7. Подставим это выражение в уравнение:

2y = 228°.

8. Находим угол C:

y = 228° / 2 = 114°.

ответ:  
Угол C составляет 114°.
от