Протон влетает в магнитное поле с индукцией 6,3 мТл перпендикулярно линиям индукции. Сколько оборотов сделает протон за 0,1 с? Масса протона 1,67 • 10~27 кг, заряд 1,6 • 10~19 Кл.
от

1 Ответ

Дано:
- Индукция магнитного поля B = 6,3 мТл = 6,3 * 10^-3 Т
- Масса протона m = 1,67 * 10^-27 кг
- Заряд протона q = 1,6 * 10^-19 Кл
- Время t = 0,1 с

Найти: количество оборотов, которые сделает протон за 0,1 с.

Решение:

1. Сначала найдем силу, действующую на протон в магнитном поле. Эта сила равна центростремительной силе, действующей на заряженную частицу, движущуюся по окружности:

F = q * v * B

где v — скорость протона.

2. Центростремительная сила, действующая на протон, равна:

F = (m * v^2) / r

где r — радиус окружности.

3. Приравняем обе силы:

q * v * B = (m * v^2) / r

4. Из этого уравнения можно выразить радиус r:

r = (m * v) / (q * B)

5. Найдем скорость протона. Для этого воспользуемся формулой для периода T движения по окружности:

T = 2 * π * r / v

Из этого выражения получаем количество оборотов N за время t:

N = t / T = t * (v / (2 * π * r))

6. Подставим выражение для радиуса r в формулу для N:

N = t * (v / (2 * π * (m * v) / (q * B)))
N = t * (q * B) / (2 * π * m)

7. Подставим известные значения в формулу:

N = (0,1) * (1,6 * 10^-19) * (6,3 * 10^-3) / (2 * π * (1,67 * 10^-27))

8. Выполним расчет:

- Сначала найдем значение числителя:

1,6 * 10^-19 * 6,3 * 10^-3 = 1,008 * 10^-21

- Далее найдем значение знаменателя:

2 * π * (1,67 * 10^-27) ≈ 1,047 * 10^-26

9. Теперь подставим эти значения в формулу для N:

N = (0,1) * (1,008 * 10^-21) / (1,047 * 10^-26)

10. Рассчитаем количество оборотов:

N ≈ 9,62

Ответ: протон сделает примерно 9,62 оборотов за 0,1 с.
от