Поперечная волна распространяется вдоль натянутого шнура со скоростью 1,8 м/с при частоте 3 Гц. Чему равна разность фаз колебания двух точек, отстоящих друг от друга на расстояние 0,2 м?
от

1 Ответ

Дано:
Скорость волны: v = 1,8 м/с  
Частота: f = 3 Гц  
Расстояние между двумя точками: d = 0,2 м  

Найти: разность фаз колебания двух точек.

Решение:

1. Найдем длину волны λ. Длина волны связана со скоростью и частотой по формуле:

λ = v / f

2. Подставим известные значения:

λ = 1,8 м/с / 3 Гц  
λ = 0,6 м

3. Теперь найдем разность фаз Δφ. Разность фаз между двумя точками, находящимися на расстоянии d друг от друга, можно выразить через длину волны:

Δφ = (2π / λ) * d

4. Подставим значения:

Δφ = (2π / 0,6 м) * 0,2 м  

5. Выполним вычисление:

Δφ = (2 * 3,14 / 0,6) * 0,2  
Δφ ≈ (10,47) * 0,2  
Δφ ≈ 2,094 рад

Ответ: разность фаз колебания двух точек составляет примерно 2,094 радиан.
от