Дано:
В турнире участвует 16 игроков, среди которых есть два друга. Каждый игрок имеет равные шансы на победу – вероятность выигрыша и поражения составляет 0,5.
Найти:
Вероятность того, что два друга встретятся между собой в каком-то туре.
Решение:
В турнире по олимпийской системе всего 4 раунда (первый раунд - 16 игроков, второй раунд - 8 игроков, третий раунд - 4 игрока, четвертый раунд - 2 игрока).
1. В первом раунде 16 игроков разбиваются на 8 пар. Два друга могут встретиться в первой игре.
Вероятность того, что они встретятся в первой игре:
- Всего 15 возможных соперников для первого друга, из которых 1 — это его друг.
- Вероятность встречи = 1/15.
2. Если они не встретились в первом раунде, то один из них должен выиграть и пройти во второй раунд. Чтобы понять вероятность их встречи в следующих раундах, предположим, что оба друга выиграли свои игры и вышли во второй раунд.
Второй раунд включает 8 игроков, и друзей по-прежнему 2 из этих 8. Вероятность того, что они встретятся во втором раунде:
- Всего 7 возможных соперников для одного друга.
- Вероятность встречи = 1/7.
3. Аналогично, если оба друга снова выиграют и выйдут в третий раунд, теперь будет 4 игрока, и вероятность их встречи составит:
- Всего 3 возможных соперника.
- Вероятность встречи = 1/3.
4. Если оба друга выиграют и выйдут в финал (четвертый раунд), то они обязательно встретятся, так как останется только 2 игрока.
Теперь найдем общую вероятность того, что два друга встретятся в каком-либо из раундов:
P(встреча) = P(встреча в первом раунде) + P(не встретиться в первом, но встретиться во втором) + P(не встретиться во втором, но встретиться в третьем) + P(не встретиться в третьем, но встретиться в финале).
Это можно выразить следующим образом:
P(встреча) = P(в первом раунде) + (1 - P(в первом раунде)) * P(во втором раунде) + (1 - P(в первом раунде)) * (1 - P(во втором раунде)) * P(в третьем раунде) + (1 - P(в первом раунде)) * (1 - P(во втором раунде)) * (1 - P(в третьем раунде)) * P(в финале).
Подставляем значения:
P(встреча) = (1/15) + (14/15)*(1/7) + (14/15)*(6/7)*(1/3) + (14/15)*(6/7)*(2/3)*1.
Теперь упрощаем каждую часть:
1. Вероятность встречи в первом раунде: 1/15.
2. Вероятность встречи во втором раунде:
= (14/15) * (1/7) = 14/105.
3. Вероятность встречи в третьем раунде:
= (14/15) * (6/7) * (1/3) = 84/315.
4. Вероятность встречи в финале:
= (14/15) * (6/7) * (2/3) * 1 = 168/315.
Теперь суммируем все вероятности:
P(встреча) = 1/15 + 14/105 + 84/315 + 168/315.
Сначала приводим к общему знаменателю. Общий знаменатель = 315.
1/15 = 21/315,
14/105 = 42/315.
Теперь у нас:
P(встреча) = 21/315 + 42/315 + 84/315 + 168/315 = 315/315 = 1.
Ответ:
Вероятность того, что два друга встретятся между собой в каком-то туре, составляет 1.