Осевое  сечение  цилиндра — квадрат  с  площадью 2,56 дм2. Найдите площадь основания цилиндра.
от

1 Ответ

Дано:
- площадь осевого сечения цилиндра = 2,56 дм².

Найти: площадь основания цилиндра.

Решение:

1. Осевое сечение цилиндра представляет собой прямоугольник, где одна из сторон является высотой цилиндра (h), а другая сторона — диаметром основания цилиндра (d).

2. Из условия задачи известно, что осевое сечение имеет форму квадрата. Следовательно, высота цилиндра и диаметр основания цилиндра равны между собой, то есть:
   h = d.

3. Площадь осевого сечения квадратна и равна 2,56 дм². Площадь квадрата рассчитывается по формуле:
   площадь = d².

   Таким образом, из уравнения:
   d² = 2,56.

4. Извлекаем квадратный корень из обеих частей уравнения:
   d = √2,56 = 1,6 дм.

5. Площадь основания цилиндра — это площадь круга, радиус которого равен половине диаметра (r = d/2). Площадь круга вычисляется по формуле:
   площадь основания = π * r².

6. Подставляем значения:
   r = d/2 = 1,6/2 = 0,8 дм.
   площадь основания = π * (0,8)² = π * 0,64 ≈ 3,1416 * 0,64 ≈ 2,0106 дм².

Ответ: площадь основания цилиндра примерно равна 2,01 дм².
от