дано:
E1 = 9 Дж (энергия заряженного конденсатора)
C1 = C (емкость первого конденсатора)
C2 = C/2 (емкость второго незаряженного конденсатора)
найти:
Q (количество тепла, выделившееся при подключении второго конденсатора)
решение:
1. Определим напряжение на первом конденсаторе с помощью формулы для энергии:
E1 = (1/2) * C1 * U^2
9 = (1/2) * C * U^2
U^2 = 18 / C
U = √(18 / C)
2. Теперь, когда второй конденсатор подключается параллельно, общая емкость будет:
Cобщ = C1 + C2 = C + C/2 = (3/2)C
3. Энергия новой цепи рассчитывается по формуле:
E2 = (1/2) * Cобщ * U^2
E2 = (1/2) * (3/2)C * U^2
E2 = (3/4) * C * U^2
Подставляем значение U^2 из предыдущего шага:
E2 = (3/4) * C * (18 / C)
E2 = (3/4) * 18
E2 = 13,5 Дж
4. Количество тепла Q, выделившееся при подключении второго конденсатора, будет разницей между первоначальной энергией E1 и конечной энергией E2:
Q = E1 - E2
Q = 9 - 13,5
Q = -4,5 Дж
Так как количество тепла не может быть отрицательным, это значит, что система в данном случае не выделяет тепло, а поглощает.
ответ:
Количество тепла, выделившееся при подключении второго конденсатора, составляет 4,5 Дж (поглощено, а не выделено).