В баллоне объемом V = 6·10-2 м3 находится кислород при температуре t = 270С. Определите массу израсходованного кислорода, если давление в баллоне уменьшилось на ΔP = 100 кПа. Процесс считать изотермическим.
от

1 Ответ

дано:
- объем V = 6 * 10^-2 м³.
- температура t = 27 °C = 27 + 273.15 = 300.15 K.
- изменение давления ΔP = 100 кПа = 100000 Па.

найти:
массу израсходованного кислорода m.

решение:
1) Используем уравнение состояния идеального газа:

PV = nRT,

где:
- P - давление,
- V - объем,
- n - количество вещества (в молях),
- R - универсальная газовая постоянная (R ≈ 8.31 Дж/(моль·К)),
- T - абсолютная температура в Кельвинах.

2) В начальный момент давление P1 и после уменьшения станет P2:

P1 = P0 - ΔP, где P0 - начальное давление (неизвестно).

3) Изменение числа молей n при процессе можно выразить как:

n1 = P1V / RT и n2 = P2V / RT.

4) Разность количества вещества (количество израсходованного кислорода):

Δn = n1 - n2 = (P1 - P2)V / RT = ΔPV / RT.

5) Теперь найдем массу израсходованного кислорода:

m = Δn * M,

где M - молярная масса кислорода (O2), M ≈ 32 г/моль = 0.032 кг/моль.

6) Подставим значения в формулу для массы:

Δn = ΔP * V / (R * T),

Δn = 100000 * (6 * 10^-2) / (8.31 * 300.15).

7) Рассчитаем Δn:

Δn ≈ 100000 * 0.06 / (2480.65) ≈ 2.42 моль.

8) Затем найдем массу:

m = Δn * M = 2.42 * 0.032 ≈ 0.07744 кг.

ответ:
Масса израсходованного кислорода составляет примерно 0.07744 кг или 77.44 г.
от