дано:
V1 = 37 л = 0.037 м³ (объем воды в ванне)
t1 = 20 °C (температура воды в ванне)
V2 = 20 л = 0.020 м³ (объем добавляемой воды)
t2 = 60 °C (температура добавляемой воды)
найти:
конечную температуру t_final смешанной воды в ванне.
решение:
1. Рассчитаем массу воды, используя плотность воды ρ ≈ 1000 кг/м³:
m1 = V1 * ρ = 0.037 м³ * 1000 кг/м³ = 37 кг.
m2 = V2 * ρ = 0.020 м³ * 1000 кг/м³ = 20 кг.
2. Используем закон сохранения энергии, согласно которому теплота, потерянная горячей водой, равна теплоте, полученной холодной водой:
m1 * c * (t_final - t1) + m2 * c * (t_final - t2) = 0,
где c – удельная теплоемкость воды (она сокращается).
3. Упростим уравнение:
m1 * (t_final - t1) + m2 * (t_final - t2) = 0.
4. Подставим известные значения:
37 * (t_final - 20) + 20 * (t_final - 60) = 0.
5. Раскроем скобки:
37 * t_final - 740 + 20 * t_final - 1200 = 0.
(37 + 20) * t_final - 740 - 1200 = 0.
57 * t_final - 1940 = 0.
6. Найдем t_final:
t_final = 1940 / 57 ≈ 34.04 °C.
ответ:
Температура воды в ванне после добавления 20 л воды при температуре 60 °C станет примерно 34.04 °C.