Дано:
- Изменение высоты, h = 10 см = 0.1 м
- Ускорение свободного падения, g = 9.81 м/с²
Найти: скорость v тела в положении равновесия.
Решение:
1) При движении нитяного маятника потенциальная энергия преобразуется в кинетическую. В положении равновесия вся потенциальная энергия переходит в кинетическую.
2) Потенциальная энергия на высоте h:
PE = m * g * h
3) Кинетическая энергия в положении равновесия:
KE = (1/2) * m * v²
4) Приравняем потенциальную и кинетическую энергию:
m * g * h = (1/2) * m * v²
5) Массу m можно сократить (при условии, что она не равна нулю):
g * h = (1/2) * v²
6) Упростим уравнение для нахождения скорости v:
v² = 2 * g * h
7) Подставим известные значения:
v² = 2 * 9.81 м/с² * 0.1 м
v² = 1.962 м²/с²
8) Найдем v:
v = √(1.962) ≈ 1.4 м/с
Ответ:
Скорость тела в положении равновесия составляет примерно 1.4 м/с.