В закрытом сосуде находится воздух при температуре 50 °С с относительной влажностью (р] = 40%. Если массу паров воды в сосуде увеличить на 1 г, то относительная влажность воздуха станет р2 = 90%. Определите объём сосуда. Температура воздуха постоянна. Давление насыщенных паров воды при температуре  = 50 °С равно 12,3 кПа.
от

1 Ответ

Дано:
Температура воздуха (T) = 50 °C
Относительная влажность воздуха до изменения массы паров воды (р1) = 40%
Относительная влажность воздуха после изменения массы паров воды (р2) = 90%
Увеличение массы паров воды (Δm) = 1 г = 0.001 кг
Давление насыщенных паров воды при температуре T = 50 °C (P) = 12.3 кПа

Найти:
Объем сосуда.

Решение с расчетом:
Из условия задачи мы знаем, что относительная влажность определяется как отношение фактической концентрации водяного пара к концентрации при насыщении, т.е.
p = m / m_max,
где m - масса паров воды в смеси, m_max - максимальная масса паров воды при заданной температуре и давлении.

Так как температура воздуха постоянна, максимальная масса паров воды при начальной относительной влажности (р1) и при конечной относительной влажности (р2) остается неизменной.

m1/m_max = р1
m2/m_max = р2

Из условия задачи известно, что увеличение массы паров воды на Δm = 0.001 кг привело к изменению относительной влажности с р1 до р2. Тогда для начального состояния имеем:
m1 = m_max * p1
m2 = m_max * p2

Следовательно, разница между m2 и m1 равна Δm:
m2 - m1 = m_max * (p2 - p1) = Δm
m_max = Δm / (p2 - p1)

Теперь можем выразить объем сосуда:
m_max = ρV / R*T
где ρ - плотность водяного пара, V - объем сосуда, R - универсальная газовая постоянная, T - температура воздуха.

V = m_max * R * T / ρ

Подставим значение m_max:
V = (Δm / (p2 - p1)) * R * T / ρ

Подставим данные и найдем объем сосуда:
V = (0.001 кг / (0.9 - 0.4)) * 8.31 Дж/(моль*К) * (50 + 273) К / (12.3 кПа * 1000 Па/кПа) ≈ 1.81 м³

Ответ:
Объем сосуда составляет около 1.81 м³.
от