Два тела брошены под углом к горизонту так, что проекции их начальных скоростей на вертикальную ось отличаются в два раза. Чему равно отношение их времени полета t1/t2, до падения при полете над горизонтальной плоскостью?
от

1 Ответ

дано: Проекции начальных скоростей двух тел на вертикальную ось отличаются в два раза.

найти: Отношение времени полета t1/t2 до падения при полете над горизонтальной плоскостью

решение с расчетом: Пусть скорость первого тела V1 и угол бросания α1, а скорость второго тела V2 и угол бросания α2.
Вертикальная составляющая начальной скорости для первого тела: V1y = V1 * sin(α1)
Вертикальная составляющая начальной скорости для второго тела: V2y = V2 * sin(α2)
Из условия задачи известно, что V1y = 2V2y, а также из законов физики известно, что время полета зависит только от вертикальной составляющей скорости. Поэтому можно записать соотношение для времен полета:
t1 / t2 = sqrt(V1y / V2y) = sqrt(2)
Таким образом, отношение времени полета t1 / t2 равно sqrt(2).

ответ: Отношение времени полета t1 / t2 до падения при полете над горизонтальной плоскостью равно sqrt(2).
от