Дано: плотность нефти ρ = 820 кг/м³, ускорение свободного падения \(g = 9.8 \ м/с^2\), глубина погружения h = 0.8 м, размеры бруска 0,5х0,4х0,1
Найти: силу давления нефти на нижнюю грань бруска.
Решение:
Сначала найдем объем бруска: V = lwh,
V = 0.5 * 0.4 * 0.1,
V = 0.02 м³.
Теперь найдем вес бруска: m = ρV,
m = 820 * 0.02,
m = 16.4 кг.
Сила давления определяется как вес жидкости, displaced by the body, что равно весу жидкости, объем которой равен объему погруженного тела.
Сила давления F = ρVgh,
F = 820 * 0.02 * 9.8 * 0.8,
F = 128.64 Н.
Ответ: Сила, с которой нефть давит на нижнюю грань бруска, составляет 128.64 Н.