Дано:
Высота цилиндра H = 2H
Длина нити L = H
Масса поршня M
Площадь цилиндра S
Количество молей кислорода под поршнем n
Начальное давление кислорода P₀ = Mg/2S
Переданное количество теплоты Q
Найти:
Расстояние от дна цилиндра, на котором окажется поршень
Решение:
1. Найдем работу силы тяжести, совершенную при опускании поршня на расстояние h:
A = mgh = (M + nm)gh,
где m - масса воздуха, попавшего под поршень, m = nM.
2. Найдем изменение внутренней энергии газа:
ΔU = Q - A,
так как газу сообщили количество теплоты Q.
3. Из уравнения состояния идеального газа PV = nRT найдем работу газа, совершенную при смещении поршня на расстояние h:
W = P₀S(2H - h) - P₀S(2H) = -P₀Sh.
4. Приравниваем работу газа к изменению внутренней энергии газа:
-P₀Sh = Q - A,
-P₀Sh = Q - (M + nm)gh.
5. Выразим h и найдем его значение:
h = (Q - Mgh)/(P₀S + nP₀S).
Ответ:
Поршень окажется на расстоянии h = (Q - Mgh)/(P₀S + nP₀S) от дна цилиндра.