Один из двух смежных углов на 30° больше другого. Найдите величину меньшего из них
от

1 Ответ

Дано:

Один из двух смежных углов на 30° больше другого.

Найти:

Величину меньшего из смежных углов.

Решение:

1. Обозначим меньший угол как x. Поскольку углы смежные, их сумма равна 180°.

2. Больший угол будет x + 30°.

3. Запишем уравнение для суммы углов:
   x + (x + 30°) = 180°

4. Упростим уравнение:
   2x + 30° = 180°

5. Выразим x:
   2x = 180° - 30°
   2x = 150°
   x = 150° / 2
   x = 75°

Ответ: 75°.
от