дано:
B = 0,1 Тл (индукция магнитного поля)
r = 4 см = 0,04 м (радиус траектории протона)
z = 9,58 * 10⁷ Кл/кг (удельный заряд протона)
v₀ — начальная скорость протона
v₁ = v₀ / 2 — конечная скорость протона (скорость уменьшается в 2 раза)
найти:
Разность потенциалов, которую должен пройти протон, чтобы его скорость уменьшилась в 2 раза.
решение:
1. Для протона, движущегося по дуге окружности в магнитном поле, радиус траектории связан с его массой, зарядом и скоростью через формулу:
r = m * v / (q * B).
2. Так как масса протона m = z * mₑ, где mₑ — масса электрона (mₑ = 1,67 * 10⁻²⁷ кг), и заряд протона q = e = 1,6 * 10⁻¹⁹ Кл, можем выразить скорость протона через его радиус траектории:
v = r * q * B / m
= r * e * B / (z * mₑ).
3. Подставляем известные значения для нахождения начальной скорости v₀:
v₀ = 0,04 м * 1,6 * 10⁻¹⁹ Кл * 0,1 Тл / (9,58 * 10⁷ Кл/кг * 1,67 * 10⁻²⁷ кг)
v₀ ≈ 3,85 * 10⁶ м/с.
4. Скорость уменьшилась в 2 раза, значит, конечная скорость v₁ = v₀ / 2.
5. Энергия протона в магнитном поле определяется как кинетическая энергия:
E₀ = (1/2) * m * v₀².
6. Когда протон проходит через электрическое поле, его кинетическая энергия изменяется за счет работы электрического поля:
ΔE = q * U, где U — разность потенциалов.
7. Поскольку его скорость уменьшается в 2 раза, энергия уменьшится в 4 раза (так как кинетическая энергия пропорциональна квадрату скорости):
ΔE = E₀ - E₁ = (1/2) * m * v₀² - (1/2) * m * (v₀ / 2)²
ΔE = (1/2) * m * v₀² - (1/8) * m * v₀²
ΔE = (3/8) * m * v₀².
8. Разность потенциалов можно найти из уравнения ΔE = q * U:
(3/8) * m * v₀² = e * U.
9. Подставляем выражение для скорости и массы и решаем для U:
(3/8) * z * mₑ * v₀² = e * U
U = (3/8) * z * mₑ * v₀² / e
= (3/8) * 9,58 * 10⁷ Кл/кг * 1,67 * 10⁻²⁷ кг * (3,85 * 10⁶ м/с)² / 1,6 * 10⁻¹⁹ Кл
≈ 2,37 * 10⁶ В.
ответ:
Разность потенциалов, через которую должен пройти протон, чтобы его скорость уменьшилась в 2 раза, составляет примерно 2,37 * 10⁶ В.