дано:
- BC = 12√2 м
- AC = 6 м
- sin ∠B = 1/4
найти:
- угол A
решение:
Сначала найдем сторону AB, используя закон синусов. Запишем уравнение:
a / sin(A) = b / sin(B)
где:
- a = BC = 12√2
- b = AC = 6
- sin(B) = 1/4
Подставим значения в формулу:
(12√2) / sin(A) = 6 / (1/4)
Упрощаем правую часть:
(12√2) / sin(A) = 6 * 4 = 24
Теперь выразим sin(A):
sin(A) = (12√2) / 24
Упрощаем:
sin(A) = √2 / 2
Теперь найдем угол A. Если sin(A) = √2 / 2, то угол A равен 45 градусов.
ответ:
угол A = 45°.